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The ester is a prevalent motif found in diverse synthetic and
biological architectures, from fatty acid triesters to macrolide

antibiotics. Nature uses enzymes (e.g., polyketide synthase) to form 1 ©

ester bonds by coupling alcohols to activated thioesterhe

majority of synthetic approaches to constructing esters involve this

samenatural carbor-oxygen bond formation. For example, many

stoichiometric reagents, including Corey-Nicolaou’s PySSPy and
Yamaguchi’s acid chloride, have been developed to activate car-

boxylic acids and achieve macrolactonizatiérwe envisioned a

fundamentally different approach to lactonization based on the

ability of Rh(l) complexes to activate the-& bond of aldehydes

(Scheme 1). Herein, we report a novel and atom economical strategy
for making chiral lactones starting from keto-aldehydes. In contrast

Scheme 2. Proposal for Tishchenko versus Benzoin
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to conventional strategies, this ester synthesis features an unprecscheme 3. Competing Transformations for Model Substrate

edented regio- and enantioselective carbonyl hydroacylation.

Scheme 1. An Atom Economical Strategy for Lactonization
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While the Rh-catalyzed hydroacylation of alkenes and alkynes 120 °C. An illustrative study of six chiral diphosphine ligands is

has been reportetthe analogous hydroacylation of carbonyl com-
pounds, specifically prochiral ketones, has been virtually unex-
plored# Since Tsuji's discovery,it has become well-established

shown in Table 1. These ligands are listed in order of increasing
basicity to highlight a trend between phosphine basicity and catalyst
selectivity Cf entry 1-6). (R)-Ph-MeOBIPHEP 12) (the least basic

that Rh(I) complexes can undergo oxidative addition of aldehydes phosphine in this series) was ineffective at promoting hydroacy-

1 to form acyl-Rh(lll) intermediate? (Scheme 2§.We hypoth-
esized that, in the presence of a ketone, interme@iatauld react
via two regio-divergent pathways: a “Tishchenko-typet’ a “ben-
zoin-type” hydroacylatiof.In the Tishchenko-type hydroacylation,
2 undergoes hydrometalation of ketoBeo form organorhodium
intermediatel. Subsequent reductive elimination frehwould yield
the desired chiral esté Conversely, intermediacould undergo
acylmetalation of carbonyB to form a rhodium-alkoxide6.
Reductive elimination fron® would generate-hydroxy ketoner,
the formal benzoin product.

For our initial investigation of the proposed lactonization, we
chose readily available keto-aldehy@a as the test substrate
(Scheme 3Y.Intramolecular hydroacylation da could yield a
seven-membered ring lactorga and/or the six-membered ring
chromanond 0a'° The Rh-promoted decarbonylation&dto form
benzene derivativélawould be a competing and nonproductive
pathway. Based on previous studiésye considered that the
coordinating ability of the ether-oxygen 8a could help suppress
decarbonylation and facilitate hydroacylation.

A number of catalysts were examined to achieve regio- and
enantioselective hydroacylation 84, including the use of cationic

lation. Use of ligandl.2 resulted in complete decarbonylation (98%
yield 113 entry 1). R)-Ar-MeOBIPHEP13 is structurally related
to 12, except thatl3is more basic and sterically encumbering due
to the presence of the substituted-aryl rings on phosphine<(Ar
3,54-Bu-4-MeOGH,). Remarkably, catalyst [RB8)]BF, trans-
formed8ainto lactonedain 63% yield and 95% ee. While formal
benzoin productOawas not observed, decarbonylated produiet
was formed in 31% yield (entry 2). By using the more electron-
rich biphenyl-phosphine ligand}-DTBM-SEGPHOSL14, hydro-
acylation efficiency was improved without compromising enan-
tioselectivity (76% yieldBa, 96% ee, ndlOa and 22% vyieldl1la
entry 3).

Based on this trend, we studied several alkyl-substituted phos-
phine ligands which were expected to further improve reaction
efficiency due to their increased phosphine basicity. As anticipated,
achiral ligand 1,3-bis(diphenylphosphino)propane (dppp) enabled
Rh-catalyzed hydroacylation &ato yield 9a exclusively in 96%
yield. However, a chiral analogue of dpp|39-BDPP 15, gave
only 4% ee and 67% vyield dda (entry 4). R R)-Me-Duphos16
also afforded lacton@awith excellent efficiency (95% yield) albeit
in 82% ee (entry 5).RR)-Me-BPE 17, the most basic ligand in

Rh(l) salts and various phosphine ligands, in dichloroethane at this series, appears to be too electron-rich, affording sluggish
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Table 1.

entry:

ligand:
MeO PPh, MeO PAr, PAr,
MeO. PPh, MeO PAr, PAr;

Ar = 3,5-t-Bu-4-MeOCgH,

Phosphine Effect on Catalytic Selectivity@

yield 9a: <1% 63% 76%
ee 9a: n/a 95% ee 96% ee
yield 11a: 98% 31% 22%
entry 6
ligand:

P

<Lj” Q
17

yield 9a: 67% 95% 46%
ee 9a: 4% ee 82% ee 76% ee
yield 11a: 33% <5% 6%

aGeneral conditions:8a, 5 mol % [Rh(Ligand)]BE, dichloroethane,
120°C, 3 d in asealed tube. Yields based on integration by NMR.

Formal benzoin productOa was not observed under these conditions.

Enantiomeric excess determined by chiral HPLC.

Table 2. Intramolecular Hydroacylation of Various Ketones
o (o}
©\)kH 5 mol% [Rh((R)-(14)|BF 4 /O)ER
O/\H/ R CHZCIZ, rt O
8 O 9
entry R lactone time (d) % yield? %ee’ % decarbon.
1 Ph 9a 3 92 99 7
2 4-Cl-Ph 9b 2 89 99 7
3 2-naphthyl 9c 2 85 99 9
4 Me 9d 2 91 99 6
5 n-Bu 9e 2 99 >99 0
6 Bn of 35 93 >99 0
7 i-Pr 99 15 98 >99 0
8 t-Bu 9h 15 94 >99 0

a|solated yields? Determined by chiral HPLC.Decarbonylated product
yields based oAH NMR integration relative to product peaks.

reactivity (46% vyield9a, 6% yield 11a) and moderate enantiose-
lectivity (76% ee) (entry 6).

By varying the solvent and temperature, we found that use of
catalyst [Rh(R)-(14)]BF, in dichloromethane at room temperature

afforded optimal results. Under these conditions, lactdaevas

formed in 92% yield and 99% enantiomeric excess, while decar-

bonylated productlawas formed in only 7% yield (Table 2, entry

1). Next, we investigated the scope of the reaction by varying the
substituents on the prochiral ketone component (Table 2). Other

aromatic ketones (e.g., R= 4-CI-Ph and 2-naphthyl) were

hydroacylated to form the corresponding lactones in good yields

and excellent enantioselectivities (entries 2 and 3). Aliphatic ketones
bearing substituents of varying sizes were also transformed with
remarkable efficiency. The methyl substituted ketone underwent
hydroacylation to form lacton@d in 91% yield and 99% ee (entry
4). Notably,n-butyl, benzyl,i-Pr, andtert-butyl substituted lactones
were isolated in high yields>93%) as essentially single enan-
tiomers 99% ee, entries-58). Single-crystal X-ray analysis of
chloro-substituted lactor@b reveals the absolute configuration to
be theS-configuration as depicted.

In summary, we have designed and executed a new approach to
forming chiral lactones. This €H bond functionalization strategy
involves an unprecedented Rh-catalyzed hydroacylation of ketones.
The basicity of the phosphine ligand plays a critical role in
promoting hydroacylation over competitive decarbonylation. In-
tramolecular hydroacylation of keto-aldehyd@&soccurs with
complete regiocontrol to yield formal Tishchenko lactones in large
enantiomeric excess. Further scope and mechanistic studies are
underway to determine the origin of regio- and enantioselectivity
in this transformation.
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